skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paudel, Binod"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-throughput combinatorial synthesis of Al1−xRExN (RE = Pr, Tb) thin films with 0 <x< 0.4 was performed to assess composition-phase-property relationships in an emerging materials family. 
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  2. null (Ed.)
  3. Abstract The discovery of topological Hall effect (THE) has important implications for next‐generation high‐density nonvolatile memories, energy‐efficient nanoelectronics, and spintronic devices. Both real‐space topological spin configurations and two anomalous Hall effects (AHE) with opposite polarity due to two magnetic phases have been proposed for THE‐like feature in SrRuO3(SRO) films. In this work, SRO thin films with and without THE‐like features are systematically Investigated to decipher the origin of the THE feature. Magnetic measurement reveals the coexistence of two magnetic phases of different coercivity (Hc) in both the films, but the hump feature cannot be explained by the two channel AHE model based on these two magnetic phases. In fact, the AHE is mainly governed by the magnetic phase with higherHc. A diffusive Berry phase transition model is proposed to explain the THE feature. The coexistence of two Berry phases with opposite signs over a narrow temperature range in the high Hc magnetic phase can explain the THE like feature. Such a coexistence of two Berry phases is due to the strong local structural tilt and microstructure variation in the thinner films. This work provides an insight between structure/micro structure and THE like features in SRO epitaxial thin films. 
    more » « less
  4. Abstract A variety of mechanisms are reported to play critical roles in contributing to the high carrier/electron mobility in oxide/SrTiO3(STO) heterostructures. By using La0.95Sr0.05TiO3(LSTO) epitaxially grown on different single crystal substrates (such as STO, GdScO3, LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and CeO2buffered STO) as the model systems, the formation of a conducting substrate surface layer (CSSL) on STO substrate is shown at relatively low growth temperature and high oxygen pressure (725 °C, 5 × 10–4 Torr), which contributes to the enhanced conductivity of the LSTO/STO heterostructures. Different from the conventional oxygen vacancy model, this work reveals that the formation of the CSSL occurs when growing an oxide layer (LSTO in this case) on STO, while neither annealing nor the growth of an Au layer alone at the exact same growth condition generates the CSSL in STO. It demonstrates that the oxide layer actively pulls oxygen from STO substrate at given growth conditions, leading to the formation of the CSSL. The observations emphasize the oxygen transfer across film/substrate interface during the synthesis of oxide heterostructures playing a critical role in functional properties. 
    more » « less